不同根的有理展开定理

如果 $R(x) = \frac{P(x)}{Q(x)}$ ,其中 $Q(x) = q_0(1 - \rho_1x) \cdots (1 - \rho_lx)$ 而各 $\rho_i$ 均不相同,又如果 $P(x)$ 是一个次数小于 $l$ 的多项式,那么 $[x^n]R(x) = \sum_{i=1}^la_i\rho_i^n$ ,其中 $a_i = \frac{-\rho_iP(\frac{1}{\rho_i})}{Q'(\frac{1}{\rho_i})}$

证明:

感谢 @FSYo 的讲解

易发现,如果 $R(x) = \frac{P(x)}{Q(x)}$ 等于 $S(x) = \frac{a_1}{1 - \rho_1x} + \cdots + \frac{a_l}{1 - \rho_lx}$ ,那么公式成立

化简 $S(x)$ $S(x) = \frac{q_0\sum_{i = 1}^{l}a_i\prod_{i \neq j}(1 - \rho_jx)}{q_0\prod_{i = 1}^{l}(1 - \rho_ix)} = \frac{q_0\sum_{i = 1}^la_i\prod_{i \neq j}(1 - \rho_jx)}{Q(x)}$ ,因此我们只需要证明 $q_0\sum_{i = 1}^la_i\prod_{i \neq j}(1 - \rho_jx) = P(x)$

因为

$Q'(x) = ((1 - \rho_1x) \cdot (q_0\prod_{i=2}^{l}(1 - \rho_ix)))'$

$= (1 - \rho_1x)'(q_0\prod_{i=1}^{l}(1 - \rho_ix)) + (1 - \rho_1x)(q_0\prod_{i=2}^{l}(1 - \rho_ix))'$

$= (1 - \rho_1x)'(q_0\prod_{i \neq 1}(1 - \rho_ix)) + (1 - \rho_2x)'(q_0\prod_{i \neq 2}(1 - \rho_ix)) + (1 - \rho_1x)(1 - \rho_2x)(q_0\prod_{i=3}^{l}(1 - \rho_ix))'$

$= \prod_{i=1}^{l}(1 - \rho_ix)'(q_0\prod_{i \neq j}(1 - \rho_jx))$

$= \prod_{i=1}^{l}-\rho_i(q_0\prod_{i \neq j}(1 - \rho_jx))$

所以若取 $x=\frac{1}{\rho_k}$,则 $q_0a_k\prod_{j \neq k}(1 - \frac{\rho_j}{\rho_k}) = q_0\frac{-\rho_kP(\frac{1}{\rho_k})}{Q'(\frac{1}{\rho_k})}\prod_{j \neq k}(1 - \rho_jx) = q_0\frac{-\rho_kP(\frac{1}{\rho_k})}{-\rho_k(q_0\prod_{j \neq k}(1 - \frac{\rho_j}{\rho_k}))}\prod_{j \neq k}(1 - \rho_jx) = P(\frac{1}{\rho_k})$

所以 $q_0\sum_{i = 1}^la_i\prod_{i \neq j}(1 - \rho_jx) = P(x)$,由此得证 $S(x) = \frac{P(x)}{Q(x)} = R(x)$

渲染好的:



 

评论

此博客中的热门博文