总览:
动态开点线段树,像暴力的合并(然而不是
时间复杂度:O(nlogn)O(nlogm)(n表示修改次数,m表示线段树值域)
模板:
inline int merge(int x,int y,int l,int r){
if(!x||!y) return x|y;
if(l==r){
return x;
}
int mid=(l+r)>>1;
tr[x].ls=merge(tr[x].ls,tr[y].ls,l,mid);
tr[x].rs=merge(tr[x].rs,tr[y].rs,mid+1,r);
pushup(x);
return x;
}
复杂度证明:
对于两颗有k个叶节点重合的线段树,合并的复杂度为klogm,合并之后会减少k个叶节点
也就是说每删除一个叶节点的复杂度是logm
对于n次操作,我们会产生n个叶节点,因此最多删除n个叶节点,复杂度就是nlogm
思路:
差分
在 x,y 处加,lca(x,y),f(lca(x,y)) 处减
从叶子结点开始合并查询
代码:
#include <bits/stdc++.h>
using namespace std;
#define re register
namespace IO {
#define in Read()
inline char ch() {
static char buf[1 << 21], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2)
? EOF
: *p1++;
}
inline int in {
int s = 0, f = 1;
char x;
for (x = getchar(); x < '0' || x > '9'; x = getchar())
if (x == '-') f = -1;
for (; x >= '0' && x <= '9'; x = getchar())
s = (s << 1) + (s << 3) + (x & 15);
return f == 1 ? s : -s;
}
}
using namespace IO;
const int A=4e5+5;
const int K=1e5;
int n,m;
int head[A],tot_road;
struct Road{
int nex,to;
}road[2*A];
inline void edge(int x,int y){
road[++tot_road]={head[x],y};head[x]=tot_road;
}
int dep[A],f[A],top[A],son[A],sz[A];
inline void DFS1(int fa,int x){
f[x]=fa,dep[x]=dep[fa]+1,sz[x]=1;
for(int y=head[x];y;y=road[y].nex){
int z=road[y].to;
if(z==fa) continue;
DFS1(x,z);
sz[x]+=sz[z];
if(sz[z]>sz[son[x]]) son[x]=z;
}
return;
}
inline void DFS2(int x){
if(son[x]){
top[son[x]]=top[x];
DFS2(son[x]);
}
for(int y=head[x];y;y=road[y].nex){
int z=road[y].to;
if(top[z]) continue;
top[z]=z;
DFS2(z);
}
return;
}
inline void tree_cut(){
DFS1(0,1);
top[1]=1;
DFS2(1);
return;
}
inline int lca(int x,int y){
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]]) swap(x,y);
x=f[top[x]];
}
return dep[x]<dep[y]?x:y;
}
int rt[A],tot;
struct Tree{
int ls,rs,num,ans;
}tr[20*A];
int res[A];
inline void pushup(int x){
if(tr[tr[x].ls].num<=0&&tr[tr[x].rs].num<=0) return;
if(tr[tr[x].ls].num>=tr[tr[x].rs].num){
tr[x].num=tr[tr[x].ls].num;
tr[x].ans=tr[tr[x].ls].ans;
}
else{
tr[x].num=tr[tr[x].rs].num;
tr[x].ans=tr[tr[x].rs].ans;
}
return;
}
inline void add(int &x,int l,int r,int w,int val){
if(!x) x=++tot;
if(l==r){
tr[x].num+=val;
tr[x].ans=tr[x].num>0?l:0;
return;
}
int mid=(l+r)>>1;
if(w<=mid) add(tr[x].ls,l,mid,w,val);
else add(tr[x].rs,mid+1,r,w,val);
pushup(x);
return;
}
inline int merge(int x,int y,int l,int r){
if(!x||!y) return x|y;
if(l==r){
tr[x].num+=tr[y].num;
tr[x].ans=tr[x].num>0?l:0;
return x;
}
int mid=(l+r)>>1;
tr[x].ls=merge(tr[x].ls,tr[y].ls,l,mid);
tr[x].rs=merge(tr[x].rs,tr[y].rs,mid+1,r);
pushup(x);
return x;
}
inline void work(int fa,int x){
for(int y=head[x];y;y=road[y].nex){
int z=road[y].to;
if(z==fa) continue;
work(x,z);
rt[x]=merge(rt[x],rt[z],1,K);
}
res[x]=tr[rt[x]].ans;
return;
}
signed main() {
n=in,m=in;
for(int i=1;i<n;i++){
int u=in,v=in;
edge(u,v),edge(v,u);
}
tree_cut();
for(int i=1;i<=m;i++){
int u=in,v=in,w=in;
add(rt[u],1,K,w,1);
add(rt[v],1,K,w,1);
add(rt[lca(u,v)],1,K,w,-1);
add(rt[f[lca(u,v)]],1,K,w,-1);
}
work(0,1);
for(int i=1;i<=n;i++)
printf("%d\n",res[i]);
return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
思路:
先将路径拆成 s 到 lca 和 lca 到 t 两部分
对于 s 到 lca:
对 i 有贡献,当且仅当
deps−depi=widepi+wi=depsdeps−depi=widepi+wi=deps
对于 lca 到 t:
对 i 有贡献,当且仅当
deps−deplca+depi−deplca=wideps−2×deplca=wi−depideps−deplca+depi−deplca=wideps−2×deplca=wi−depi
注意可能产生负数
线段树合并维护即可
代码:
#include <bits/stdc++.h>
using namespace std;
#define re register
namespace IO {
#define in Read()
inline char ch() {
static char buf[1 << 21], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2)
? EOF
: *p1++;
}
inline int in {
int s = 0, f = 1;
char x;
for (x = getchar(); x < '0' || x > '9'; x = getchar())
if (x == '-') f = -1;
for (; x >= '0' && x <= '9'; x = getchar())
s = (s << 1) + (s << 3) + (x & 15);
return f == 1 ? s : -s;
}
}
using namespace IO;
const int A=3e5+5;
const int K=3e5;
int n,m;
int head[A],tot_road;
struct Road{
int nex,to;
}road[2*A];
inline void edge(int x,int y){
road[++tot_road]={head[x],y};head[x]=tot_road;
}
int f[A],dep[A],sz[A],son[A],top[A];
inline void DFS1(int fa,int x){
f[x]=fa,dep[x]=dep[fa]+1,sz[x]=1;
for(int y=head[x];y;y=road[y].nex){
int z=road[y].to;
if(z==fa) continue;
DFS1(x,z);
sz[x]+=sz[z];
if(sz[z]>sz[son[x]]) son[x]=z;
}
return;
}
inline void DFS2(int x){
if(son[x]){
top[son[x]]=top[x];
DFS2(son[x]);
}
for(int y=head[x];y;y=road[y].nex){
int z=road[y].to;
if(top[z]) continue;
top[z]=z;
DFS2(z);
}
return;
}
inline void tree_cut(){
DFS1(0,1);
top[1]=1;
DFS2(1);
return;
}
inline int lca(int x,int y){
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]]) swap(x,y);
x=f[top[x]];
}
return dep[x]<dep[y]?x:y;
}
int tim[A];
int rt[A],tot;
struct Tree{
int ls,rs,s[2];
}tr[20*A];
int res[A];
inline void pushup(int x){
if(!tr[x].ls&&!tr[x].rs) return;
tr[x].s[0]=tr[tr[x].ls].s[0]+tr[tr[x].rs].s[0];
tr[x].s[1]=tr[tr[x].ls].s[1]+tr[tr[x].rs].s[1];
return;
}
inline void add(int &x,int l,int r,int w,int val,int pos){
if(!x) x=++tot;
if(l==r){
tr[x].s[pos]+=val;
return;
}
int mid=(l+r)>>1;
if(w<=mid) add(tr[x].ls,l,mid,w,val,pos);
else add(tr[x].rs,mid+1,r,w,val,pos);
pushup(x);
return;
}
inline int merge(int x,int y,int l,int r){
if(!x||!y) return x|y;
if(l==r){
tr[x].s[0]+=tr[y].s[0];
tr[x].s[1]+=tr[y].s[1];
return x;
}
int mid=(l+r)>>1;
tr[x].ls=merge(tr[x].ls,tr[y].ls,l,mid);
tr[x].rs=merge(tr[x].rs,tr[y].rs,mid+1,r);
pushup(x);
return x;
}
inline int qurey(int x,int l,int r,int w,int pos){
if(!x) return 0;
if(l==r) return tr[x].s[pos];
int mid=(l+r)>>1;
if(w<=mid) return qurey(tr[x].ls,l,mid,w,pos);
else return qurey(tr[x].rs,mid+1,r,w,pos);
}
inline void work(int fa,int x){
for(int y=head[x];y;y=road[y].nex){
int z=road[y].to;
if(z==fa) continue;
work(x,z);
rt[x]=merge(rt[x],rt[z],-K,K);
}
res[x]+=qurey(rt[x],-K,K,dep[x]+tim[x],0);
res[x]+=qurey(rt[x],-K,K,tim[x]-dep[x],1);
return;
}
signed main() {
n=in,m=in;
for(int i=1;i<n;i++){
int u=in,v=in;
edge(u,v),edge(v,u);
}
tree_cut();
for(int i=1;i<=n;i++) tim[i]=in;
for(int i=1;i<=m;i++){
int u=in,v=in;
int k=lca(u,v);
add(rt[u],-K,K,dep[u],1,0);
add(rt[f[k]],-K,K,dep[u],-1,0);
add(rt[v],-K,K,dep[u]-2*dep[k],1,1);
add(rt[k],-K,K,dep[u]-2*dep[k],-1,1);
}
work(0,1);
for(int i=1;i<=n;i++) printf("%d ",res[i]);
return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
评论
发表评论